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An efficient approach to combat the accumulation of aflatoxin is the development
of germplasm resistant to infection and spread of 4. flavus. in maize, one of the most
important cereal grains in the world. Lipoxygenases (LOXs) are a group enzymes that
catalyze oxygenation of polyunsaturated fatty acids (PUFAs). LOX derived oxilipins play
critical roles in plant defense against pathogens such as 4. flavus. The objectives of this
study were to report sequence diversity and expression patterns for all LOX genes, and
map their effect on aflatoxin accumulation via linkage and association mapping. Genes
GRMZM2G102760 (ZmLOX 5) and GRMZM2G104843 (ZmLOX 8) fell under
previously published QTL in one of four mapping populations and appear to have a
measurable effect on the reduction of aflatoxin in maize grains. The association mapping
result shows 19 of the total 215 SNPs found within the sequence of the ZmLOXs were
associated with reduced aflatoxin levels.
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CHAPTER I

INTRODUCTION

The most important group of cultivated crop plants in the world is cereals, of
which maize (Zea Mays, L) is the most widely grown, with 791.6 million tons of maize
produced in the year 2008 (USDA 2009). In different processed forms, maize is the staple
food for a large number of people in the developing world, providing significant amounts
of nutrients, in particular calories and protein. However, maize is often contaminated
with aflatoxin produced by the fungus Aspergillus flavus (Castells et al. 2007). Globally,
corn kernels infected by toxigenic fungus, including two Aspergillus species, pose a
serious health threat to humans and animals because aflatoxins are carcinogenic and
hepatotoxic. Economically, aflatoxin contamination poses a problem for farmers, as
contaminated grains are not marketable. The U.S Food and Drug Administration (FDA)
prohibits interstate commerce of grains that have an aflatoxin concentration equal to or
greater than 20ng/g (Brown et al. 2003), and other countries have similar limits. The
selection of germplasm that is resistant to either Aspergillus flavus or the production of its
toxic metabolite aflatoxin has great potential to reduce the problems and risks posed by
infected corn grains, but the highly quantitative nature of the trait makes it difficult to
transfer the resistance from resistant lines to new elite inbred parents and hybrid cultivars.
Quantitative trait loci (QTL) mapping studies have identified several potential QTL for

reduced aflatoxin accumulation or Aspergillus flavus and /or ear rot resistance (Widstrom
1
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et al.; 2003). In addition, previous Genome Wide Association Studies (GWAS) have
identified many smaller genomic regions associated with a reduction in aflatoxin levels in
maize (Warburton et al., 2015). Identification of loci for aflatoxin accumulation reduction
found in resistant lines and the discovery of molecular markers linked to the genes or
QTLs would also help to speed up the transfer of resistance from the resistant donor line
to the elite cultivars (Warburton et al. 2010).

Aspergillus flavus is found mostly on decaying plant materials in the soil, but can
also infect living plant tissues that has been stressed (i.e. by drought). It is also found in
plant products, especially in oil rich seeds such as corn, cotton and peanuts. Aspergillus.
flavus also produces a secondary metabolite known as aflatoxin, which is the most potent
carcinogen known, it is hepatotoxic, and known to reduce immune system function and
juvenile development in humans and many animal species (Geiser et al. 2000).
Aspergillus flavus, Penicillium puberulum and Aspergillus parasiticus are the three major
species of fungi that produces aflatoxin (Austwick and Elphick 1964). Aflatoxins are one
of the mycotoxins regulated by the United States Food and Drug Administration (FDA).
Restrictions on aflatoxin infected maize has resulted in losses of millions of dollars
yearly by farmers in the United States (Robens and Cardwell, 2005). Contamination of
agricultural commodities by aflatoxin also pose a serious health effect on humans and
animals. Due to the economic losses and the health threat posed by Aspergillus flavus and
aflatoxins, researchers have been trying to find a solution to reduce aflatoxin
contamination of maize by implementing several strategies.

Considering all the various methods and strategies that have been employed to

reduce aflatoxin accumulation in maize, host plant resistance is one of the most effective

2
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and promising long term solution to aflatoxin accumulation. This methodology is the
easiest for farmers to implement, since all the needed technology is already encapsulated
into the seed. Many resistant lines have been identified, including Mp313E, Mp715, and
Mp717 (Williams et al. 2006); however, these tend to lack the attributes and
characteristics of acceptable commercial cultivars such as early maturity and high yield.
They are thus not currently used as parents of commercial cultivars, and transferring the
resistance into commercial cultivars has proven difficult due to the highly quantitative
nature of the resistance (Hamblin and White 2000; Warburton et al. 2011). The trait
involves multiple genes interacting together and their additive effect makes the plant
more resistant.

Lipid peroxidation is common to all biological systems, appears in
developmentally-regulated processes, and as a response to environmental changes.
(Andrew et al.et al. 2009). Lipoxygenase (LOX), the enzyme responsible for lipid
peroxidation, is ubiquitous in all eukaryotes and a number of bacteria. (Andreou et al.et
al. 2009; oliw, 2002). Lipoxygenases are non-heme iron-containing fatty acid
dioxygenases that catalyze the peroxidation of polyunsaturated fatty acids (PUFA) such
as linoleic acid, a-linolenic acid and arachidonic acid (Acosta et al.et al., 2009) to form
fatty acid hydroperoxide. Lipoxygenase reactions may also initiate the synthesis of a
signaling molecule or be involved in inducing structural or metabolic changes in the cell
(Brash 1999). The metabolism of PUFA via a LOX catalyzed step as well as alternative
and subsequent reactions are collectively included in the Oxilipins pathway. Products
derived from lipid peroxidation (called Oxilipins) are produced by Lipoxygenase

pathways and are the most understood plant Oxilipins. Lipoxygenase pathways are region

3
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specific and the dioxygenation of the substrates such as linoleic acid (18:3) and linolenic
acid (18:3) to from (9S) hydroperoxyoctadecadienoic acid (9-HPOTE) or (13S)
hydroperoxyoctadecadienoic acid (13- HPOTE) depends solely on the regions (the
carbon where the molecular oxygen is added). The 9- and 13- HPOTEs are then used as
substrates for the seven branches of LOX pathways which includes the peroxygenase,
divinyl ether synthase, reductase, epoxy alcohol synthase, Hydroperoxide lyase (HPL),
Allene oxide synthase (AOS) and LOX reactions (Feussner and Wasternack, 2003).

Lox and the products of the LOX pathway are involved in various biological
processes such as seed germination (Feussner et al.et al.; 2001), sex determination
(Acosta et al.et al.; 2009), and fruit ripening (Chen et al.et al.; 2004). Research has also
shown that the Lox pathways produces a compound known as oxilipins e.g Jasmonic acid
(JA) which are involved in the regulation of stress induced gene expression (Howe and
Schilmiller; 2002) due to variety of biotic and abiotic stresses, and also, based on the
effects of LOX products, a physiological function for LOXs has been proposed for
growth and development (Rosahl, 1996). The LOX products are not formed prior to
infection but are formed de novo when the plant is exposed to mechanical injury and or
herbivore or pathogen attack (Howe and Schilmiller, 2002, Croft et al, 1990 and Keppler
& Novacky, 1987). Mycotoxin production in fungi is partially regulated by the genes
belonging to the lipoxygenase family and has been hypothesized to play an important role
in the susceptibility of plants to fungal invasion (Fuente et al; 2013).

Based on the global importance of maize, the health and economic damage of
aflatoxin contamination, and the possible mitigating effects of the Lox genes on aflatoxin

production, the main objectives of this study are: to identify genes with lipoxygenase

4
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activity by a search of online databases and published literature; to characterize these
genes based on published or new sequence and expression data; to use genetic linkage
and disequilibrium mapping to map candidate genes in one association panel and up to
four QTL mapping populations using linked markers and to determine the phenotypic
effect each gene has on aflatoxin accumulation resistance (if any). In addition, new Near
Isogenic Line genetic mapping populations will be created to validate previously

identified regions of the genome associated with aflatoxin accumulation resistance.

www.manharaa.com




Literature cited

Acosta, Ivan F., et al. "tasselseed] is a lipoxygenase affecting jasmonic acid signaling in
sex determination of maize." Science 323.5911 (2009): 262-265.

Andreou, Alexandra, and Ivo Feussner. "Lipoxygenases—structure and reaction
mechanism." Phytochemistry 70.13 (2009): 1504-1510.

Austwick, P. K. C., and J. J. Elphick. (1964). The occurrence of toxin-producing isolates
in the Aspergillus flavus-oryzae series. Proc. Intern. Botan. Congr., 10th, p. 69.

Brash, Alan R. "Lipoxygenases: occurrence, functions, catalysis, and acquisition of
substrate." Journal of Biological Chemistry 274.34 (1999): 23679-23682.

Brown RL, Chen ZC, Menkir A, Cleveland TE (2003). Using biotechnology to enhance
host resistance to aflatoxin contamination of corn. Afr. J. Biotech., 2 : 557- 562.

Castells, Miren, et al. "Distribution of fumonisins and aflatoxins in corn fractions during
industrial cornflake processing." International journal of food microbiology 123.1

(2008): 81-87.

Chen, Z. Y., et al. "Corn as a source of antifungal genes for genetic engineering of crops
for resistance to aflatoxin contamination." Crop Biotechnology 829 (2002): 131-
150.

Chen, Zhi-Yuan, Robert L. Brown, and Thomas E. Cleveland. "Evidence for an
association in corn between stress tolerance and resistance to Aspergillus flavus

infection and aflatoxin contamination." African Journal of Biotechnology 3.12
(2005): 693-699.

Croft, Kevan PC, Friedrich Juttner, and Alan J. Slusarenko. "Volatile products of the
lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves inoculated

with Pseudomonas syringae pv phaseolicola." Plant Physiology 101.1 (1993): 13-
24,

Dorweiler J, Stec A, Kermicle J, Doebley J (1993) Teosinte glume architecture 1: A
genetic locus controlling a key step in maize evolution. Science 262 : 233 — 235

FDA United States Food and Drug Administration (2011) Guidance for industry: action
levels for poisonous or deleterious substances in human food and animal
feed.<http://www.fda.gov/Food/GuidanceComplianceRegulatorylnformation/Gui
danceDocuments/Chemical ContaminantsandPesticides/ucm077969.htm#afla>

Feussner, Ivo, and Claus Wasternack. "The lipoxygenase pathway." Annual review of
plant biology 53.1 (2002): 275-297.

www.manaraa.com



Gobel, Cornelia, and Ivo Feussner. "Methods for the analysis of oxylipins in plants."
Phytochemistry 70.13 (2009): 1485-1503.

Goldblatt, L. (ed.) (1969) Aflatoxin: Scientific Background, Control, and Implications.
New York: Academic Press.

Ggqaleni N, Smith JE, Lacey J, Gettinby G (1997) Effects of temperature and water
activity, and incubation time on production of aflatoxins and cyclopiazonic acid
by an isolate of Aspergillus

Hamblin AM, White DG (2000) Inheritance of resistance to Aspergillus ear rot and
aflatoxin production of corn from Tex6. Phytopathology 90: 292-296

Kaeppler, L.D. and Novacky, A. (1987) The initiation of membrane lipid peroxidation
during bacteria-induced hypersensitive reaction. Phys. Mol. Plant Path. 30, 233—
245.

Kaeppler SM, Phillips RL, Kim TS (1993) Use of near-isogenic lines derived by
backcrossing or selfing to map qualitative traits. Theor Appl Genet 87 : 233 — 237

Oliw, Ernst H. "Plant and fungal lipoxygenases." Prostaglandins & other lipid mediators
68 (2002): 313-323.

Osbourn, Anne E. "Preformed antimicrobial compounds and plant defense against fungal
attack." The Plant Cell 8.10 (1996): 1821.

Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988)
Resolution of quantitative traits into Mendelian factors by using a complete
linkage map of restriction fragment length polymorphisms. Nature 335 : 721 —
736

Paterson AH, DeVerna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative
trait loci using selected overlapping recombinant chromosomes, in an interspecies
cross of tomato. Genetics 124 : 735 — 742

Robens J, Cardwell KF (2005) The costs of mycotoxin management in the United States.
In: Abbas HK (editor) Aflatoxin and food safety. New York: Taylor and Francis.
1-12

Rosahl, S. (1996). Lipoxygenases in plants — their role in development and stress
response. Z. Naturforsch. [C], 51, 123—-138.

Sanguineti, M. C., et al. "QTL analysis of drought-related traits and grain yield in relation

to genetic variation for leaf abscisic acid concentration in field-grown maize."
Journal of Experimental Botany 50.337 (1999): 1289-1297.

www.manaraa.com



Schnable, Patrick S., et al. "The B73 maize genome: complexity, diversity, and
dynamics." science 326.5956 (2009): 1112-1115.

Shanti, M. L., George, M. L. C., Cruz, C. M. V., Bernardo, M. A., Nelson, R. J., Leung,
H., Reddy, J. N. & Sridhar, R. (2001). Identification of resistance genes effective

against rice bacterial blight pathogen in eastern India. Plant Dis. 85, 506-512.
(doi:10.1094/PDIS.2001.85.5.506)

Siedow, James N. "Plant lipoxygenase: structure and function." Annual review of plant
biology 42.1 (1991): 145-188.

Siraj M.Y, A. W Hayes, P. D. Unger, G. R. Hogan, N. J. Ryan and B. W. Wray (1981):
Analysis with HPLC. Toxicol. Appl. Pharmacol. 58, 422

Smart, M. G., and R. W. Caldwell. "Pathogenesis in Aspergillus ear rot of maize: light
microscopy of fungal spread from wounds." wounds 801123 (1990): 1294.

Squire, R.A. (1981) Rating animal carcinogens: a proposed regulatory approach.
Science, 214, 877-880.

Vincelli, Paul, et al. "Aflatoxins in corn." University of Kentucky Coop. Ext. Serv. Report
ID-59 (1995).

Warburton ML, Brooks TD, Windham GL, Williams, WP (2010) Identification of novel
QTL contributing resistance to aflatoxin accumulation in maize. Mol Breeding
27:491-499. doi:10.1007/s11032-010-9446-9

Warburton, Marilyn L., et al. "A public platform for the verification of the phenotypic
effect of candidate genes for resistance to aflatoxin accumulation and Aspergillus
flavus infection in maize." Toxins 3.7 (2011): 754-765.

Wasternack, Claus, et al. "The wound response in tomato—role of jasmonic acid." Journal
of plant physiology 163.3 (2006): 297-306.

Widstrom, N.W., A. Burton, B.Z. Guo, D.M. Wilson, M.E. Snook, T.E. Cleveland, and
R.E. Lynch. (2003). Control of pre-harvest aflatoxin contamination in maize by
pyramiding QTL involved in resistance to ear-feeding insects and invasion by
Aspergillus spp. Eur. J. Agron. 19:563-572. do0i:10.1016/S1161-0301(03)00004-2

Williams, W. P., and G. L. Windham. "Registration of maize germplasm line Mp717."
Crop science 46.3 (2006): 1407-1408.

Yashitola, J., Thirumurugan, T., Sundaram, R. M., Naseerullah, M. K., Ramesha, M. S.,

Sarma, N. P. & Sonti, R. V. (2002). Assessment of purity of rice hybrids using
microsatellite and STS markers. Crop Sci. 42 ,1369-1373.

www.manaraa.com



Zuber, E. B. Lillehoj, and B. L. Renfro (1987). International Maize and Wheat
Improvement Center, Mexico, D.F.

www.manharaa.com




CHAPTER II

LITERATURE REVIEW

Maize (Zea Mays L)

Maize is one of the leading crops in the world (Figure 2.2) and is a critical food,
fuel and fiber source, and used to extract other industrial components for plastics, paints,
glues, pharmaceuticals, etc. Due to the importance of maize to food security and in
industry and easy growth characteristics, it has been a model for plant geneticists as well
(Tenaillon and Charcosset 2011). Maize was domesticated from of the wild Mexican
grass known as teosinte (Figure 2.1). The major difference between teosinte and maize is
that teosinte typically has multiple long branches with tassels and grains at their tips
whereas maize processes a single stalk tipped by a tassel and one or a few short branches
tipped by an ear. Genetic analysis has determined that a single gene, teosinte branched 1

(tb1), largely controls this difference (Doebley et al.; 1995).
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Figure 2.1  Teosinte, the wild mexican grass believed to be the progenitor of maize
(Tenaillon and Charcosset 2011).

Archeological and genetic evidence places the time of maize domestication at
9000 BP (Matsuoka et al., 2002). Maize cobs morphologically similar to modern ears
have been observed to date back to 6250BP from Guila Naquitz (Piperno and Flanner
2001) and 5500BP from the Tehuacan valley (Long et al. 1989) in central Mexico. Maize
was first recorded in Europe in 1493BP when it was introduced by Columbus, and from
there it was taken to the Vatican where it was painted in frescoes near Rome around
1517BP (Janick and Caneva 2005). Today, maize (Zea Mays L), rice (Oryza sativa) and
wheat (Triticum cestivum) are the world’s main staple crops and maize is the 2" largest
harvested crop by area planted (FAOSTAT 2009). The United States is the world’s
largest producer of maize followed by China, The European Union, Brazil, and Mexico
(NCGA 2011), while worldwide maize exports is led by the United States, Argentina and
Brazil (NCGA 2011). In the United States, maize is mainly used for animal feed and

11

www.manharaa.com




residual (38.7%), fuel/ethanol (36.5%), export (14.5%), and high fructose corn syrup

(3.8%) (NCGA 2011).

Top 5 items - World (Average 2002 - 2013)
Source: Crops, National Production (FAOSTAT)

Wheat Maize Rice, paddy Soybeans Barley

. Area Harvested [ha]

Figure 2.2 A graph showing the five highest produced (ha) crops in the world.
http://faostat.fao.org/default.aspx

Aspergillus flavus.

Aspergillus is a large genus of fungi which has significant detrimental impact
economically, ecologically, and medically. Species in this genus are abundant and widely
distributed in the soil, water, air, and in plants (Klich 2002). During warm, dry periods,
several of the aspergilla increase rapidly in association with crop plants (Cotty et al.;
1994). Aspergillus flavus is an anamorphic genus consisting of about 250 recognized
species. It is characterized by a distinctive spore-bearing structure, the aspergillum

(Figure 2.3) and in culture, Aspergillus flavus is characterized by fast-growing yellow-
12
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green colonies, usually 65-70mm in diameter after 7 days growth in the dark at 25°C on

Czapek yeast extract (CYA) and it grows well at 37°C (Klich 2007).

HED2
L1455

X ’,:\'; 53

~ Foot cells

Figure 2.3  Conidiophores of Aspergillus (Klich, 2007)

It has been possible to isolate Aspergillus flavus from all of the major biomes,
although it is isolated relatively more frequently in warm temperate zones (latitude 26-
35°) than in tropical or cooler temperate zones, and is quite uncommon in latitudes above
45° (Klich, 2002b; Manabe and Tsuruta, 1978). There are clear interactions between
agriculture and aflatoxins produced by the fungi in the Aspergillus flavus group. Some
consequences of these interactions are obvious while some others are virtually
unexplored (Cotty et al.; 1994). Aspergillus. flavus has a broad host range as an

opportunistic pathogen/saprobe and infects many economically important crops which
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can then become contaminated with aflatoxins; these include corn, cotton, peanut, and
many other tree nuts (Sweany et al. 2011). Aspergillus flavus is also a human pathogen
(Horn 2009) that has become increasingly important because immunosuppressed

individuals are susceptible to infections by these fungi

Aflatoxins

The discovery and first characterization of aflatoxin occurred in the early 1960’s
when more than 100,000 turkeys died in England after consuming mold contaminated
peanut meal (Blout, 1961 and Goldblatt, 1969). Aflatoxins are a group of secondary
metabolites produces by Aspergillus flavus and Aspergillus parasiticus that can be
recognized by the yellow-green or gray-green colored growth on corn kernels,
respectively. Aflatoxin B1 is the most potent naturally formed carcinogen known (Squire
1981). Aflatoxins can be detected either on corn still growing in the field or in storage
after the corn has been harvested. The risk of aflatoxin contamination is higher when
moldy grains are damaged, providing easy entry of the growing fungus into the kernel.
Aflatoxin contamination levels are highest during hot, dry summers compared to cool
and/or wet summers.

In addition to aflatoxins, Aspergillus flavus also produces unrelated mycotoxins
known as cyclopiazonic acid (CPA) an indol-tetramic acid that targets the liver, kidneys

and gastrointestinal tracts of animals (Table 2.1)
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Table 2.1  Secondary metabolites produced by different species of aspergillus.

Species Aflatoxins Other secondary metabolites
Aspergillus avenaceus Avenaciolide
Aspergillus bombycis B,G [Kojic acid
Aspergillus caelatus Kojic acid, aspergillic acid and cyclopiazonic acid
Aspergillus flavus B,G kojic acid, nominine, paspaline, paspaliline
Aspergillus lanosus Griseofluvin, kojic acid, met [
Aspergillus leporis Antibiotic Y, kojic acid, leporine, pseurotin
Aspergillic acid, kojic acid, nominine, pseurotin,
Aspergillus nominus B,G tenuazonic acid
Aspergillus oryzae Cyclopiazonic acid, kojic acid
Aspergillic acid, kojic acid, parasiticol,
Aspergillus parasiticus B,G |parasiticolide A
Aspergillus
seudotamarii B Cyclopiazonic acid, kojic acid
Aspergillus sojae Kojic acid
Aspergillus tamarii Cyclopiazonic acid, fumigaclavine A, kojic acid
Petromycesalliaceus nominine, ochratoxin A and B, paspaline.

Reproduced from Scheidegger and Payne 2005

Aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), and aflatoxin
G2 (AFQG2) are the four major types of aflatoxins produced by Aspergillus fungi (Table
2.2) and the names are derived from the fluorescence they produce under ultraviolet (UV)
light (which is blue or green). In addition, aflatoxin M1 and M2 are found in milk
following consumption of feed contaminated with aflatoxin by milk producing animals or
lactating mothers (Richard and Payne 2002). Oil seed crops such as maize, cotton and
tree nuts are very susceptible to aflatoxin accumulation because most of these crops are
grown in the latitude where Aspergillus flavus thrive and possibly due to the carbon
utilization pattern of Aspergillus flavus (Klich 2007). The high oil content of the grains

and embryos of these seeds are a very good medium for growth of the fungus.
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Table 2.2

Physical data of aflatoxin

Molecular formula| Molecular weight | Melting point [a]D?*
Aflatoxin
Bi C17H1206 312 268-269* -559
B> C17H1406 314 286-289* -492
Gi Ci17H1207 328 244-246* -533
G2 C17H1407 330 237-240* -473

*Decomposes (Wogan 1966)

Aflatoxins in Maize

Due to the essential role played by maize in feeding the world, it is important to

treat any pathogen that affects maize production, consumption and byproduct utility

seriously. Infection of maize ears by 4. flavus is very difficult to predict by farmers

(Smart et al. 1990), and it causes ear rot and aflatoxin contamination, with their economic

and health burdens. Aspergillus flavus as an opportunistic pathogen has limited direct

pathogenic abilities, but specific environmental conditions increase the fungi’s ability to

infect, rot ears, and cause aflatoxin contamination. The two most important factors are

drought stress and high temperatures (Payne 1998).
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Figure 2.4  Diagram showing the life cycle of Aspergillus flavus and also the routes of
colonization in maize. (Payne 1998).

Maize kernel colonization by Aspergillus flavus occurs at various stages of the
plant's life when the spores are brought to the kernel surface either by insects or by the
wind (Figure 2.4). Infection of the kernels generally occurs later in the ear development
(Payne 1998). Preventive strategies such as stopping the infection process, control of
environmental factors to minimize fungal growth, and pre- and post-harvest crop
management strategies can be utilized by maize farmers to minimize the level of
aflatoxin contamination in maize since to date, it is not practically possible to stop it
altogether (Hell and Mutegi 2011). The most effective biological control for both pre-
and post-harvest control of aflatoxin contamination is through the application of
competitive non-toxigenic strains of 4. flavus which competes with the natural toxigenic

strains which can bring about 70-90% reduction of contamination (Yin et al; 2008).
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Although many of the abiotic factors (heat, drought, and nutrient deficiency) that
influence Aspergillus flavus infections cannot be prevented, pre-harvest crop
management control such as earlier planting dates, irrigation of fields, proper fertilization
(Jones et al. 1980; Rodriguez-del-Bosque 1996; Bruns 2003; Guo et al. 2005; Abbas et al.
2009) and other cultural practices such as weed control, low planting densities,
application of fungicides and tillage (Jones et al. 1981b; Payne et al. 1986; Bruns 2003)
have been shown to lower drought stress and also reduce aflatoxin accumulation in
maize. Farmers employ many practices during the harvest to help reduce aflatoxin
accumulation post-harvest such as a timely harvest to reduce further fungal growth, insect
damage after harvest, or kernel breakage due to over drying (Hell et al. 2008). After
harvesting, farmers dry corn to a moisture content of < 14%, reduce further fungal growth

and subsequent aflatoxin accumulation in maize grain (Bruns 2003; Hell et al. 2008).

Lo

Figure 2.5  The structure of aflatoxin B1 (Klich 2007)

OCH,

Aflatoxin and Health

Mycotoxins contaminate the diet of a large proportion of the world’s population,

especially in many low income countries where maize is a staple food (Council for

18

www.manaraa.com



Agricultural Science and Technology (2003). It has been estimated that 25% of the
world's crop are affected by mold or fungal growth (Mannon and Johnson 1985).
Aspergillus flavus and Aspergillus parasiticus produce the secondary metabolite aflatoxin
B1, (Figure 2.5) which is a carcinogenic substance that poses serious health hazards to
both humans and animals. Figure 2.5. shows the structure of aflatoxin B1. Aflatoxins
contaminate a variety of staple foods, particularly maize, peanuts or groundnuts and other
cereals and nuts in low income countries (Williams et al.; 2004). Consumption of high
amounts of aflatoxin is known to cause aflatoxicosis, symptoms of which include
hemorrhaging, acute liver damage, edema, problems with nutrient uptake, and possibly
death. Chronic exposure to low levels of aflatoxin will in addition cause
immunosuppression, cancer, developmental problems in growth, and other pathological
conditions.

In addition to health concerns, aflatoxins also have various other economic
impacts on animals, such as reduced productivity, immune suppression which leads to
increased incidence of other diseases, and chronic damage to vital organs. Aflatoxins
cause decreased milk production in cattle, decreased egg production in poultry, and liver
damage to animals. Young animals of various species are the most susceptible to
aflatoxins, and nursing animals will also be affected when exposed to aflatoxin and
aflatoxin metabolites which are secreted in milk. The economic impact of aflatoxin
contamination in industrial nations is straightforward because the impact is mostly
market-related as all commodities that contain aflatoxin above the regulation threshold

(Table 2.3) for human or animal feed must be discarded (Wu et al., 2008). However, in

19

www.manaraa.com



less developed countries, the estimation of the economic losses is more complex because

the health-related costs are higher than the market-related costs (Williams 2008).

Table 2.3 Guidelines for aflatoxin levels by the U.S. Food and Drug Administration

é)i;::(sn;l:rllﬁrl;l)n) Commodities & Species
For corn, peanut products, cottonseed meal and other
20 ppb animal feeds and feed ingredients intended for dairy animals;
for animal species or uses not specified below, or when the
intended use is not known.
For corn, peanut products and other animal feeds and
20 ppb feed ingredients, but excluding cottonseed meal, intended for
immature animals.
100 ppb For corn and peanut products intended for breeding beef
cattle, breeding swine or mature poultry (e.g. laying hens).
200 ppb For corn and peanut products intended for finishing
swine (100 pounds or more).
300 ppb For cottonseed meal intendfed for beef cattle, swine or
poultry (regardless of age or breeding status).
300 ppb For corn and peanut products intended for finishing beef
cattle (i.e., feedlot cattle).

http://agriculture.mo.gov/plants/feed/aflatoxin.php.

Preventing Aflatoxin Contamination

Biological and environmental factors such as insects, diseases, weeds and drought

that can directly cause plant stress also contribute to the process of infection by

Aspergillus flavus and thus have been the subject of much research effort (Widstrom et

al; 2003). Control of environmental factors through various measures has been practiced

to prevent and control fungal penetration, fungal growth and ultimately aflatoxin

production and accumulation. Aflatoxin accumulation can increase 10-fold within 3 days

when harvested grains are stored in a high moisture environment (Hell et al. 2008, Kaaya

and Kyamuhangire, 2006); thus, post-harvest management practices such as keeping

harvested grains at a safe moisture level (10-13%) can reduce aflatoxin accumulation
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post-harvest. This problem is more compounded in Africa due to excessive heat, high
humidity and insect and rodent damage, conditions that are favorable for the
development, germination, and proliferation of Aspergillus flavus spores (Hell et al.,
2008). Disinfecting measures such as smoking is a common practice carried out by about
4 - 12% of farmers in Nigeria to preserve their grains, and this practice was found to
correlate with reduces aflatoxin accumulation in the farmers’ stores (Udoh et al. 2000).
Also, it has been established that nixtamalization, a maize preparation process involving
soaking and cooking the maize grain in alkaline solution usually limewater is effective
for reducing aflatoxin contamination by 75-90% (Albores et al, 2002).

Preventive measures not including breeding for resistant lines include good
cultural practices, harvesting at the optimum stage of maturity, rapid drying after
harvesting and chemical control (Lisker and Lillehoj, 1991). Other cultural practices
involving tillage systems and crop rotation can affect soil inoculum availability and
root/soil interface (alleviating stress during later plant development) and preventing the
inoculum buildup (Jones 1987). Conventional methods of plant disease control, such as
fungicide use, has proved ineffective in controlling Aspergillus flavus infection of corn
when employed at a concentration that are both cost effective and environmentally safe
(Bhatnagar et al.; 1993). Widstrom et al. (2003) focused on the identification of the most
important and effective environmental factors that influence aflatoxin accumulation in
corn and these include temperature, rainfall, relative humidity (Net evaporation) and soil
type. The authors further stressed crop management factors including planting date,
irrigation, tillage, fertilization, weed control and fungal competition (Table 2.4). Host

plant resistance with the ultimate goal of developing resistant germplasm by plant
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breeders is, in fact, the most effective, efficient and dependable tool that we have in the
long term arsenal to protect corn from pre- and post-harvest infection and aflatoxin

contamination process (Widstrom, 1992; Zuber, 1997).

Table 2.4  Managemental practices to manage aflatoxin resistance (Abass et al.; 2009).

Strategy Method Rationale
Avoidance Early planting, supplemental irrigation, Reduce heat and moisture
short season hybrids stress
Fertility management Provide adequate nutrition N- deficiency corn more
susceptible
Insecticide Appropriate timing of application to  Insects responsible for
application control insect damage to ears enhanced ingress into
grains
Bt Hybrids Hybrids engineered with resistance to  Insects responsible for
ear- damaging insects penetration into grains
Natural resistance to Breeding and selecting hybrids for
insects resistance
Biological control ~ Use of non-toxigenic isolates of A. Competitive displacement
flavus of toxigenic isolates
Fungicides Control phylosphere fungi Reduce inoculum density
Soil management  Incorporation of crop residue Reduce inoculum density

http://faostat.fao.org/default.aspx

Host Plant Resistance

Breeding for resistance to aflatoxin accumulation is one of the most efficient and
effective ways of reducing Aspergillus flavus infection and aflatoxin accumulation in
maize (Paul et al. 2003). It is also a preventive measure that would be an excellent
remedy without the need for additional inputs beyond the seeds; thus, commercial
hybrids will ultimately save farmers money that would have been lost to aflatoxin
accumulation pre- and post-harvest. Germplasm screening studies have been extensively
used to identify a number of maize lines associated with lower grain aflatoxin levels
(Thompson et al. 1984, Windham and William 1998). This method, however, is not
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easily implemented largely due to the difficulty in finding elite lines that have high yield
and good agronomic performance and that are also resistant to aflatoxin accumulation in
multiple environments (Clements and white 2004) while conventional selection has
helped to create inbred maize lines that are resistant to aflatoxin accumulation, it is hard
to transfer aflatoxin resistance from a resistant donor line into an elite favorable
commercial cultivar due to the highly quantitative nature of the trait. This means that a lot
of genes are working together to make the plant resistant to aflatoxin accumulation
therefore and due to recombinations that happens within these genes, it will be hard to
transfer all the necessary genes into another germplasm(Stoloff and Lillehoj 1981,
William et al. 2008). It should be noted that, many new strategies that may be used
someday to enhance host plant resistance involving biotechnology are currently being
explored (Brown et al. 2003; Warburton and Williams, 2014). These new strategies
include the identification of quantitative trait loci (QTL) and related markers for marker
assisted selection (Warburton et al. 2009) and the identification of resistance-associated
proteins through proteomics and gene expression studies, and biochemical marker
identification (Bhatnagar et al. 2008). The main purpose of the maize proteome mapping
is to help in identifying and classifying functional gene products that aids in making the
plants resistance to aflatoxin accumulation (Pechanova; 2013).

As generations of backcrossing with phenotypic selection are advanced, the
resistance is often lost, so either the backcrossing must be terminated before the
generation of a new inbred line with all the characteristics of the elite line, or the

resistance of the new inbred line is lower than the resistance of the original donor.
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One method to increase the efficiency of selection of desirable traits is known as
marker assisted selection (MAS, Lande and Thompson 1989). Genetic or molecular
markers that are linked to genes or quantitative trait loci (QTL) that are associated with
the desired trait can be used to develop improved cultivars by selecting specific
chromosomal regions within the maize genome (Bernardo, 2012); in this case, those that
contain the gene(s) that contribute to aflatoxin accumulation resistance. The detection of
these regions in the progeny of breeding crosses will help to validate that resistance was
transfered into future commercial elite cultivars. Molecular markers associated with
important traits in maize are becoming increasingly available and this has given rise to
the incorporation of marker assisted selection into many maize breeding programs such
as drought tolerance and protein quality (Gao et al. 2008). There has been an aggressive
use of molecular markers in studying quantitative traits because the cost of various
marker systems such as simple sequence repeats (SSR), amplified fragment
polymorphisms (AFLP; Vos et al. 1995), and diversity array technology (DArT; Kilian et
al. 2005), and more recently, sequence based markers such as single nucleotide
polymorphisms (SNP), have decreased in most crop species (Burrow and Blake, 1998;
Bhattramakki and Rafalski, 2001). In addition, there has been the development of
computer software and statistical tools that can be used for the implementation of this

marker assisted selection procedure (Bernardo 2008).

Molecular Markers in Breeding Programs

Marker Assisted Selection (MAS) schemes include marker assisted backcrossing
and pyramiding are used to increase the effectiveness and efficiency of selecting for a

particular trait while backcrossing or intermating one or a few genes controlling the
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selected traits into an adapted cultivar (Collard and Mackill 2007). Markers can use to
transfer identified QTLs into elite cultivars via marker assisted backcrossing and also be
used to pyramid resistant QTLs from one or more donor lines (Warburton et al., 2010).
Marker assisted backcrossing is generally used to move a single trait into a breeding line
or cultivar. Marker assisted pyramiding is mostly applied to combining multiple genes for
disease resistance for the development of a stable disease resistance since pathogens are
likely to overcome single gene host resistance (Shanti et al. 2001, Kloppers and Pretorius
1997). Genomic selection is used to select for desired traits when the genes controlling
these traits are unknown. Using MAS in early breeding generations has a tremendous
advantage because plants with undesirable genes can be eliminated in the early stages,
which ultimately leads to reduced labor costs and allow breeders to focus more on the
important lines with the desirable alleles in subsequent generations (Collard and Mackill
2007). MAS can be combined with phenotypic screening (Moreau et al. 2004) and thus
has an advantage over phenotypic screening or MAS alone in order to maximize genetic

gain (Lande and Thompson 1990).

Quantitative trait loci (QTL) mapping and Association mapping

Quantitative traits have been the major focus of genetic studies for over a century
because most traits important to plant breeding, ecology, human and animal health, etc.,
are associated with a quantitative inheritance. Until recently, the study of quantitative
traits was based only on statistical techniques with limited knowledge as to the number
and the location of the genes involved in controlling the trait (Kearsey and Farquhar

1998). Despite the large number of publications on QTL mapping studies of different
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quantitative traits, only little has been reported to show the successful integration of the
QTLs in breeding programs (St. Clair 2010).

The nature of the variation associated with the trait may be an indication that the
trait is controlled by a few genes with large effects or by many genes each with smaller
cummulative effects (Bernardo 2008). To identify QTL for a particular trait, a linkage
map is constructed using a segregating population, such as F2, F3 or backcross (BC)
population, most often derived from a bi-parental cross (Collard et al. 2005). The parents
generally differ in the trait of interest. Previous reviews have shown that QTL mapping
studies are usually able to detect 3 to 5 QTL for each trait, although ranges of 1 to more
than 10 have been reported (Kearsey and Farquhar 1998). Detection of genes or QTLs
influencing a trait is possible due to genetic linkage analysis based on the principle of
genetic recombination during meiosis (Tanksley 1993). Exploiting QTL requires the
genetic mapping of linked markers and genes; results of the mapping can lead to markers
for selection (Bernardo 2008) and a better understanding of the genetic architecture of the
trait, including the number of genes and their mode of expression, interaction, and
inheritance (Beckmann and Soller 1986). In addition to the number of QTL that
contribute measurably to the trait, QTL output also gives information about the
magnitude and the gene action for each marker and QTL in each environment measured
(Mackay 2001). Multiple studies have been carried out to find QTL that are associated
with aflatoxin resistance and dozens have been identified in maize lines that are resistant
to aflatoxins (Widstrom et al., 2003), although only a handful of these have a larger effect

(Mideros et al., 2013).
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Genetic markers that are polymorphic between the two parents are used to
genotype the segregating population to create the linkage map (Young 2000). Past QTL
studies have used AFLP (amplified fragment length polymorphisms), SSR (simple
sequence repeats), RFLP (restriction length fragment polymorphisms), SNPs (single
nucleotide polymorphism) and other markers for this purpose (Francia et al. 2005;
Rafalski 2002; Robertson et al. 2005), and many maize molecular markers are available
in the public online maize database (maizeGDB.org). Good molecular markers for QTL
identification and marker assisted selection must be reliable and tightly linked to the
targeted loci (< 5¢cM genetic distance). The visual output from the software after the
creation of the linkage map shows the specific location of the markers on the
chromosome and the distance between the markers (Collard et al. 2005), and this map,
plus phenotypes of all the individuals in the mapping population, are combined to
perform the QTL analysis. The association mapping involves the genetic characterization
of the relatedness of over 282 diverse inbred lines (kinship), their diverse genetic makeup
and also substructure analysis of the lines (Warburton et al; 2012). TASSEL software
(Trait analysis by association, evolution and linkage, Bradbury et al, 2007) was used for
aflatoxin association mapping for each of the candidate genes. It employs two models
(the general linear model (GLM) and the mixed linear model (MLM)) to determine
association between sequence polymorphisms and aflatoxin levels within the aflatoxin

association mapping panel according to Elshire et al (2011).

Near Isogenic Lines (NILs)

Near Isogenic Lines (NILs) are homozygous plant lines that are identical to each

other except at one genomic region or QTL of interest, and are useful for studying the
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phenotypes associated with any specific locus (Dorweiler et al. 1993). They are a tool for
detecting linkages and gene action (epistasis) that exist between quantitative trait loci
(QTLs) and the markers used to map the QTLs to their specific locations on the
chromosome (Pea et al. 2013). The integration of a QTL into near isogenic materials is
one effective way for the identification, validation, and subsequent incorporation of the
QTL into new breeding lines in a breeding program (Kaeppler, 1987). The use of NILs to
verify and fine map QTLs has been successful in maize (Graham et al., 1997), rice (Yu et
al., 1991) and tomato (Brouwer and St Clair 2004). QTL mapping with populations of
about 300 individuals (the usual size of a mapping population) has a precision of only 10-
20cM. For a detailed study of a QTL, development Near Isogenic Lines (NILs) is one
method that is useful in resolving the map position of a QTL because it differs only for
markers that are linked to the QTL of interest (Patterson et al. 1990; Kaeppler et al.
1993). NILs that are different in the QTL of interest are also useful for studying the
different phenotypes associated with any specific locus (Dorweiler et al. 1993).

NILs to verify markers that reduce aflatoxin levels in maize are created with
initial crosses between a line that is resistant to aflatoxin accumulation (donor line) and a
line that is susceptible (recurrent line) to get the first progeny (F1) that has 50% of the
resistant parent and 50% of the susceptible parent. Several generations of backcrosses are
usually the best method to introgess the region that contains the allele of the QTL from a
donor genome into the recipient genome. The F1 generation is then backcrossed to the
susceptible parent to get the second generation of progeny that has 75% of the susceptible
parent and 25% of the resistant parent with the aim of transferring the resistance present

in the donor parent into the new progeny (but only genes for resistance). The process is
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continued for 4 to 8 generations after which a progeny between ~93% - 98% of the
susceptible parents, but containing a few genes from the resistant parent is achieved.
Marker assisted selection is used in each generation after the Fi to keep track of the
progeny that still have the allele of the QTL from the donor line after each generation of
backcrossing; otherwise, within a few generations it would surely be lost (Tuinstra et al.
1997). Despite the large number of QTLs that has been identified in various experiments
and published in the literature, the use of these QTL to develop elite cultivars is very rare
(Szalma et al., 2007) because breeders are unsure that the QTL and the markers linked to
them will be useful in new genetic backgrounds or expressed in new environments. The
use of NILs to validate previously identified QTL can help boost the confidence of
breeders attempting to introgress the QTL into elite germplasm for the improvement of

this germplasm for the trait of interest (Stuber et al., 1992).

Plant Lipoxygenases

Plant lipoxygenases or LOX enzymes are produced by plants to catalyze the
addition of molecular oxygen to polyunsaturated fatty acids (PUFAs) containing a (Z,7)-
1,4-pentadiene system to produce an unsaturated fatty acid hydroperoxides (Porta et al.,
2002). Plant LOXs are monomeric proteins with a molecular weight of about 95-100kDa
that consist of two domains. These are the - barrel amino terminal domain which is
about 25 - 30kDa and the a-helix carboxyl- terminal domain of about 55 - 60kDa. The
exact function of the amino terminal end is as yet unknown, but it is believed that it has
some involvement in membrane and substrate binding (May et al. 2000). The carboxyl
terminal end harbors the catalytic site of the enzyme where the addition of molecular

oxygen takes place (Schneider et al., 2007). LOX enzymes are classified based on their
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positional specificity of Linoleic Acid (LA) oxygenation, which is oxygenated either at
carbon atom 9 (9-LOX) or at carbon atom 13 (13-LOX) of the hydrocarbon backbone of
fatty acid, leading to (9S) hydroperoxy and (13S) hydroperoxy derivatives of LA,
respectively (Liavonchanka et al. 2006). The 9-LOX are subsequently used as substrates
for compounds which their functions are still unknown while the 13-LOX are known as
the putative producers of compounds that are known to possess anti fungal activities such
as jasmonic acid (JA) and green leaf volatiles (GLV) (Nemcnenko et al., 2006). The
intracellular localization of each LOX enzyme after production in the plant cell provides
a hint about the physiological role and function of different LOX enzymes (Feussner and
Wasternack 2002).

The identification of the genes underlying quantitative trait loci (QTLs) associated
with aflatoxin accumulation resistant in resistant maize inbred lines and the development
of molecular markers from within these genes can help to speed up the development of
resistant germplasm. Markers developed from within the gene sequence itself (gene based
markers) do not have the problem of broken linkages that can happen between
generations if the marker is too far from the gene causing the trait of interest. Therefore,
the identification of the specific genes underlying and causing a QTL would be of great
interest. LOX genes may be some of these genes.

When plants are stressed, due to attacks from harmful invaders such as insects,
bacteria or fungi, they put up some responses in order to defend themselves against such
attacks by undergoing specific metabolic processes to initiate direct or indirect defense
responses to counter these attacks (Maffei et al. 2006). The direct defense measures

involve the secretion of defensive proteins to repel their invaders while the indirect
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measures include the release of volatile organic compounds (VOC) which attracts
predators in attack other plant predators. This is achieved by metabolic products derived
from fatty acid biosynthesis and signaling pathways such as metabolites derived from
lipoxygenase (LOX; Pare and Tumlinson 1997). Lox genes are widespread in many plant
species and in some cases such as soybean and other legumes, they are abundant proteins

and might also function as storage rather than defense proteins.

Lipoxygenase Pathway

Hydroperoxides produced by LOX reactions are the starting point of a series of
other enzymatic reactions which eventually leads to the synthesis of a group of
biologically active compounds collectively called oxilipins (Santino et al. 2003). In
plants, the biosynthesis of oxilipins starts by the insertion of oxygen at the C9 or C13 of
either linoleic (C18:2) or linolenic (C18:3) and this is the reason why plant LOX is
referred to as 9-LOXs and 13-LOXs respectively. During the catalysis of insertion of
molecular oxygen (oxygenation) into polyunsaturated octadecatrienoic (C18) fatty acid
by LOX in plants, carbon 9 and 13 are both oxidized to form 9- hydroperoxyl
10(E),12(Z) and 13-hydroperoxyl-9(Z), 11(E)- derivatives respectively (Blee 2002).
Hydroperoxide lyase, allene oxide synthase, divinyl ether synthase, reductase and
peroxygenase are other enzymes which belong to different branches of the LOX
pathways that further act on both 9- and 13- hydroperoxides to convert them to different
compounds. Specific LOX isoforms has recently been clarified by an antisense approach
and their depletion was able to influence plant development or pest /pathogen resistance

(Feussner and Wasternack 2002).
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The Lipoxygenase pathway starts with regio- and stereospecific dioxygenation of
either linoleic acid (18:2) or linolenic acid (18:3) to yield 9-hydroperoxide and 13-
hydroperoxide based on the site where the molecular dioxygenation takes place. The two
products (9-hydroperoxide and 13-hydroperoxide) formed after dioxygenation are then
further used as substrate for the 7 branches of LOX pathways which includes reductase,
epoxy alcohol synthase, allene oxide synthase (AOS), reductase, hydroperoxide lyase
(HPL), divinyl ether synthase, and LOX reactions. (Feussner and Wasternack, 2002). A
common metabolic reaction which occurs by either chemical reactions or derived from
enzymatic reactions in all biological processes called lipid oxidation produces a
compound called oxilipins which performs various regulatory processes and also respond
to biotic and abiotic stresses. This reaction mainly catalyzed by Lipoxygenase (LOX)
enzymes in plants has been researched and the mode of enzymatic reactions has been
revealed in recent years (Andreou et al. 2009). Metabolic pathways involved in oxilipins
formation collectively known as oxilipin pathway involves the oxidation of
polyunsaturated fatty acids (PUFAs) which produces metabolites via a LOX-catalyzed
and also metabolites produced from the alternative oxidation reaction. The metabolism of
PUFAs via the Lipoxygenase catalyzed steps and the subsequent reactions are

collectively known as the Lipoxygenase pathway (Blee, 2002).
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CHAPTER III
GENETIC CHARACTERIZATION OF THE MAIZE LIPOXYGENASE
GENE FAMILY IN RELATION TO AFLATOXIN

ACCUMULATION RESISTANCE

Abstract

Maize (Zea mays L.) is a staple food and one of the most important cereal grains
in the world. It is prone to contamination by aflatoxin, a secondary carcinogenic
metabolite produced by the fungus Aspergillus flavus. An efficient approach to combat
the accumulation of aflatoxin is the development of a germplasm resistant to infection
and spread of 4. flavus. Lipoxygenases (LOXs) are a group of non heme iron containing
dioxygenase enzymes that catalyze oxygenation of polyunsaturated fatty acids (PUFAs),
and LOX derived oxilipins play critical roles in plant defense against pathogens such as
A. flavus. The objectives of this study were to report sequence diversity and expression
patterns for all LOX genes in the maize genome, and to map their effect on aflatoxin
accumulation via linkage and association mapping. In total, 13 LOX genes were
identified, characterized, and mapped. Genes GRMZM2G102760 in bin 5.02 and
GRMZM2G104843 in bin 2.04 fell under previously published QTL in one of four
mapping populations and appear to have a measurable effect on the reduction of aflatoxin
in maize grains. Association mapping results find 19 of the total 215 SNPs tested from

within the sequence of five genes GRMZM2G070092, GRMZM2G109130,
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GRMZM2G015419, GRMZM2G104843 and GRMZM2G102760 were associated with
reduced aflatoxin levels at 7.51x10*<p < 8.43 x 107 according to the GLM statistics. In
addition to confirming the importance of some lipoxygenases for fungal resistance,
markers from within or linked to the sequence of these genes may be used for marker

assisted selection and the creation of new resistant germplasm.

Introduction

Aspergillus flavus is a fungus found mostly in soil, but is also found in plant
products, especially in oil rich seeds such as corn, cotton and peanuts. 4. flavus produces
a secondary metabolite known as aflatoxin, which is a carcinogen, mutagen, and
hepatotoxin (Geiser et al 2000). Most commercial maize hybrids are susceptible to 4.
flavus infection, which ultimately leads to high aflatoxin accumulation under
environmental conditions favoring fungal growth and sporulation. Aflatoxin was first
discovered and characterized in the early 1960’s when more than 100,000 turkeys in
England died after consuming mold contaminated peanut meal (Blount, 1961; Goldblatt,
1969). Infection by A. flavus and A. parasiticus (which can also make aflatoxin) can be
recognized by yellow-green or gray-green fungal growth on the corn kernels,
respectively. Why A. flavus produces aflatoxins is not well understood, but it has been
reported that both A. flavus growth and the production of aflatoxins is favored by abiotic
stress such as drought, high heat and nutrient deficiencies (Moreno and Kang 1999).
Aflatoxins can be detected either on corn still in the field or in storage following harvest,
where it continue to accumulate grain stored under humid conditions. The risk of
aflatoxin contamination is higher when the grains are damaged, which creates

opportunistic entry point for fungal infection.
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Development of resistant germplasm is one of the most effective methods to
reduce aflatoxin accumulation in maize, but the quantitative nature of the trait and the
high environmental variation associated with it makes the creation of resistant germplasm
difficult to achieve. Identification of maize candidate genes that contribute to aflatoxin
resistance via QTL or association mapping and development of linked molecular markers
for marker assisted selection (MAS) is one way to speed development of resistant maize
varieties. Host plant resistance mechanisms, particularly for resistance to A. flavus, are
slowly being uncovered (Moreno and Kang, 1999; Warburton and Williams, 2014) but
many factors have yet to be determined. Nevertheless, maize breeders have been able to
develop resistant germplasm using phenotypic selection procedures in the form of inbred
lines including Mp313E, Mp715, Mp717 Mp420 (Campbell et al, 1997; William and
Windham, 2001; Scott and Zummo, 1990.)

When plants come under insect or fungal attack, genetic and metabolic processes
are initiated to help the plant respond directly or indirectly (Maffei et al, 2006). The
direct measures involve the production of defensive proteins to repel or block the attack,
while examples of indirect measures include the production of herbivore induced plant
volatiles (HIPV) emissions, which attract insect predators (Dicke, 2009; Heil, 2006).
Lipoxygenases (LOXs) are a group of non-heme iron containing dioxygenase enzymes
that catalyze oxygenation of polyunsaturated fatty acids (PUFAs) such as linoleic acid, a-
linolenic acid and arachidonic acid (Acosta et al, 2009), and LOX derived oxilipins play
critical roles in plant defense against pathogens. Research has shown that LOX pathways

are induced by a variety of biotic and abiotic stresses, and a physiological function for
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LOX enzymes has been proposed for plant growth, development, and response to
pathogen infection and wound stress.

The synthesis of jasmonic acid (JA) is initiated when a-linoleic acid (C18:3) is
released from the membrane lipids of the chloroplast by the action of phospholipase Al
(DAD1) and converted to 12-Oxo-phytodienoic acid (OPDA) by lipoxygenase, allene
oxide synthase and allene oxide cyclase (Creelman and Mullet 1997). The production of
mycotoxins by fungi is partially regulated by fungal genes that also belong to the LOX
family (Gao and Kolomeits, 2009), indicating a complicated interaction between hosts
and pathogen using the same enxymes in both organisms. LOX activity in plants has been
shown to produce metabolites essential for plant defense against pathogen infestations
through fatty acid oxidation pathways (Matsui, 2006). The oxidized products of plant
lipids (oxilipins) derived from well studied LOX pathways govern the interactions
between host and fungal pathogen (Gao and Kolomeits 2009). The role of specific LOX
isoforms are being clarified, and the deletion of LOX enzymes in maize was found to
influence plant development or pest /pathogen resistance (Feussner and Wasternack,
2002). In a study of ZmLOX 3, a LOX that belongs to the 9-LOX group, the insertion of
a mutator transposon into the coding sequence of this gene resulted in drastic reduction of
fumonosin production on kernels infected by Fusarium verticillioides (Gao et al; in
2007). A mutant maize line lox3-4, in which ZmLOX 3 and 4 were knocked out, was
more susceptible to 4. flavus and aflatoxin production than the wild type (WT) maize
control (Gao et al, 2008). LOX enzymes are widespread in many plant species.

Peroxidation of PUFAs results in fatty acid hydroperoxide and lipoxygenase
reactions, which may initiate the synthesis of a signaling molecule or be otherwise
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involved in inducing structural or metabolic changes in the cell (Brash 1999).
Hydroperoxides produced by LOX reactions are the starting point of a series of other
enzymatic reactions which eventually leads to the synthesis of biologically active
oxilipins (Santino et al 2003). Different branches of the LOX pathways lead to the
production of JA and aldehyde green leaf volatiles (GLV, Kolomeits et al 2013), which
are known to help plants defend against abiotic and biotic stresses, including fungi
(Feussner and Westernack, 2002). JA is a known plant hormone involved in growth and
development (Creelman and Mullet, 1997) and regulates several defense genes expressed
in plants in response to attack by pests and pathogens (Pena-Cortes et al, 2004; Acosta et
al, 2009).

Linkage and association mapping are two complementary ways of testing the
magnitude of the effect a gene on the overall phenotypic expression of a trait. Linkage or
quantitative trait loci (QTL) mapping accurately measures the effect of a larger genomic
region on the trait of interest because the mapping population has a balanced proportion
of alleles at all polymorphic loci, giving stronger statistical power when compared to the
association mapping, but establishing much larger linkage blocks, due to relatively few
generations of meiosis and thus recombination. Association mapping utilizes all the
diversity of many lines to identify multiple sequence polymorphisms and measure the
phenotypic effect of the favorable alleles associated with the phenotype; in addition, due
to a very large number of historical recombination events in an association panel,
resolution can be within hundreds to a few thousand base pairs (Warburton et al; 2013).
Because of the importance of the LOX gene family in fungal defense, the objectives of

this study are to characterize all genes that belong to the lipoxygenase gene family in
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maize through expression pattern and sequence polymorphisms and to map the
phenotypic effect of these genes in up to four known QTL mapping populations and one

association mapping panel.

Materials and Methods
Database search for maize LOX genes and information

A search was carried out on five databases (Gramene, MaizeGDB,Unigene,
Maizecyc and Uniprot) to find any previously published Lipoxygenase genes in maize
and also to seek any gene or protein with Lipoxygenase activity (GO: 0016165) that is
responsible for the end product of any of the seven Lipoxygenase pathways as reported
by Feussner and Wasternack; (2002). A literature search was also conducted to find any
maize lipoxygenase genes that were not included in the online resources. A total of
thirteen genes were found on chromosomes 1 (ZmLox 3, 4, 9 and 13), 2 (ZmLox 6 and
8), 3 (ZmLox 1,2 and 12), 4 (ZmLox 10), 5 (ZmLox 5 and 11), and 10 (ZmLox 7) (Table
3.1). This information was used to identify the coordinates of these genes in the maize
B73 reference genome and extract the reference DNA sequence of each gene, for BLAST
alignment and polymorphism identification.

A sequence alignment was carried out for all genes on the same chromosome with
coordinates that are physically close to each other to ensure they are not the same gene
given different names by different authors and databases. LOX genes with high sequence
homology included ZmLOX 4 and ZmLOX 5 on chromosome 1 and 5, respectively, and
ZmLOX 1 and ZmLOX 2, a pair of closely linked genes on chromosome 3 (<40kb
apart)., Aligning the sequences of these genes against each other was also done to explore

the possibility that one arose from the other in a recent duplication event. In addition,
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ZmLOX 1 and 2 are either the same gene with a very large intron, or two genes very
close together on chromosome 3. These genes have different gene identifiers but only
one identifier in the maize B73 reference sequence (GRMZM2G156861). Due to a huge
intron (>100kb) that is present in between exon 1 and exon 2 of the gene
GRMZM2G156861 (ZmLOX 1 or 2) and also a (>16kb) intron present within exon 2 and
exon 3 of gene .D GRMZM2G109056 (ZmLOX 4), a blast search was carried out on a
maize database (Gramene) and also the NCBI database to determine if the introns are
due to the presence of a transposable element in the maize genome.

In order to gain more insight into relationship between genes and possible gene
functions, two more databases were used in the characterization of the lipoxygenase gene
family. The genome wide atlas of lipoxygenase transcription during maize development
adapted from Sekhon et al. [36] and Qteller [35] was searched for expression pattern of
each LOX gene identified in maize. Finally, the PIECE (Plant Intron Exon Comparison

and Evolution) Database http://wheat.pw.usda.gov/piece was used to construct a

phylogenetic tree (Figure 2) to determine structural relationships between the LOX genes
and to provide clues about the evolutionary history of the genes. The PIECE database
uses the pfam database (V26.0) to classify all the plant genes and use the FastTree

program to build the phylogenies.

Extracting SNPs for candidate genes using GBS data

An in-house maize hapmap database was created to store Genotype By
Sequencing (GBS) data for 273 maize inbred lines that form the aflatoxin association
mapping panel described in Warburton et al (2014). The database describes where the

variants occur in the genome of each inbred line and how alleles are distributed between
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the different lines. This hapmap database was used to identify Single Nucleotide
Polymorphisms (SNPs) or Insertion/Deletion (InDel) polymorphisms within the
coordinates of each of the candidate genes (and extending up to 500 kilobases up-and
downstream). An average of 20 SNPs were found for each candidate gene, and the allelic
variant for each SNP in each of the 273 maize inbred lines was extracted. Only extracted
SNPs with a minor allele frequency of greater than 5% were used to carry out the genetic
mapping. If a sufficient number of SNPs were found within the coding sequence of the

gene, SNPs further up- and downstream were not sought.

Aflatoxin association mapping

TASSEL software (Trait analysis by association, evolution and linkage, Bradbury
et al, (2007) was used for aflatoxin association mapping for each of the candidate genes.
It employs two models (the general linear model (GLM) and the mixed linear model
(MLM)) to determine association. We ran MLM to determine associations between the
SNP and InDel sequence polymorphisms and aflatoxin levels within the association
mapping panel according to Elshire et al (2011). The panel of 273 diverse inbred lines
had been testcrossed to a common tester and phenotyped for aflatoxin levels in

inoculated, replicated field trials and reported in Warburton et al. (2013).

Genetic linkage mapping

The phenotypic and previously published genotypic data obtained from the four
F2:3 QTL mapping populations were combined with the new genetic data for each
ZmLOX sequence. Single Nucleotide Polymorphisms found to be associated with

aflatoxin levels in the candidate gene association analysis were converted to individual
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SNP assays using the KASP system from LGC Genomics (Hurts, UK). These were used
to screen the parents of four QTL mapping populations and where polymorphisms were
validated, were then scored in all F2:3 QTL mapping families. In addition,
insertion/deletion (InDel) markers from genes ZmLOX 1, ZmLOX 2, ZmLOX 3 and
ZmLOX 4, and Short Sequence Repeat (SSR) markers within 1,000kb upstream and
downstream of the coordinates for each of the candidate gene were sought in MaizeGDB
and used for linkage mapping analysis for other ZmLOX genes where no polymorphic
SNPs or InDels were found. Due to the high duplication of the ZmLOX genes and also
because some of the genes are within less than 1000kb from each other (ZmLOX 1 and 2,
and ZmLOX 3 and 4) some ZmLOX pairs were treated as a single QTL, as it would not
be possible to tell which of the genes is responsible for the phenotypic effect on the trait
(if either) using linkage mapping.

The four QTL mapping populations included Mp313E (resistant) x B73
(susceptible) Brooks et al. (2005), Mp313E (resistant) x Va35 (susceptible) Wilcox et al.
(2013), Mp715 (resistant) x T173 (susceptible) Warburton et al. (2011) and Mp717
(resistant) x NC300 (susceptible) Warburton et al. (2011). All markers were amplified via
PCR according to the manufacturers’ suggestions . The PCR products of the SSR and
InDel markers were electrophoresed and visualized on a 4% agarose gel with ethidium
bromide. SNP markers were visualized using the OMEGA plate reader by BMG
LABTECH GMBH, (Orthenberg, Germany). The allele information obtained for every
individual in the mapping populations in which the markers segregated was used to map
and test the phenotypic effects on aflatoxin resistance for each candidate gene. Markers
used to test each ZmLOX gene, including type, location, and which mapping population
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they were run in are found in Table 3.2. Quantitative trait analysis for each of the
ZmLOXs was carried out using the QTL cartographer which carries out the compisite

interval mapping to estimate the 0.05 significant threshold for each QTL (Figure 3.2)

Results
Identification of maize lipoxygenase genes

A total of 13 lipoxygenase genes were identified through a search carried out on
numerous online databases and a brief description of all maize lipoxygenase genes
(ZmLOX) with the gene identification, gene bank accession numbers, Uniprot
identification and chromosomal locations can be found in Table 3.1. ZmLOX 1, 2 and 12
(GRMZM2G156861, GRMZM2G106748) are all found on chromosome 3; according to
NCBI BLAST (Geer et al. (2010), ZmLOX 1 and 2 are 89% identical, and share the same
gene [.D. (GRMZM2G156861). They are physically ~40kb apart, and the B73 V3
reference sequence treats them as one gene with a very large intron. Genetically, we treat
them as one locus in the QTL mapping analysis.

ZmLOX 3, 4,9 and 13 (GRMZM2G109130, GRMZM2G109056,
GRMZM2G017616, GRMZMS5G822593 respectively) are all located on chromosome 1.
ZmLOX 3 and 4 are 79% identical and are < 50kb apart. They do have different gene
identifiers in the B73 V3 reference, but at such close proximity, QTL mapping will not
distinguish the genetic effects of the two (although association mapping may). Although
ZmLOX 6 and 8 (GRMZM2G040095 and GRMZM2G104843) are both located on
chromosome 2 and although they are located on the same chromosome, there was no
significant similarities found within the sequence of both genes. ZmLOX 5 and 11

(GRMZM2G102760 and GRMZM2G009479) are both located on chromosome 5, these
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pairs of genes are sufficiently distant to map independently and there was also no
significant similarities found between the sequences of the two genes ZmLOX 7 and
ZmLOX10 are located on chromosome 4 and chromosome 10, respectively.

The gene structure for each ZmLOX was identified including the number of
introns and exons present within each gene sequence, and this information was used to
create a phylogenetic relationship tree (Figure 1). Two other genes GRMZM2G018275
(Chr2: 43,746,150 - 43,747,663) and GRMZM2G087245 (Chr4: 180,815,028 -
180,816,217) were identified by the PIECE phylogenetic analysis; however, these are not
LOX genes and no gene has been associated with these gene [.Ds in maize. They are
probably artifacts created by the Pfam database, which approximates the maximum
likelihood of the relatedness of proteins, not genes. This also causes multiple transcripts
of each gene to be entered separately into the phylogenetic tree (Figure 3.1). Clustering
also occurred on LOX function, as genes from the 9-LOX functional group clustered

together, and genes from the 13-LOX group together in a distinct cluster.

Linkage and Association Mapping

The linkage was used to determine the phenotypic effect of each marker linked to
the lipoxygenase genes and to confirm the QTL position in the maize genome. Mapping
results in one or more mapping populations of the InDel and SSR markers identified
within each gene sequence or closely linked SSR markers are presented in Table 3.3. An
SSR that is linked to GRMZM2G104843 [ZmLOX 8, also known as the mutant tassel
seed 1 (ts1)] in bin 2.04 mapped right under one of the perviously identified QTLs
present on chromosome 2 of the the MpB population (Figure 3.4) with a LOD score of

5.6 and explaining about (R?) 5% of the phenotypic variation observed in this population
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in one environment. The QTL was associated with an additive gene action and the allele
causing the reduction of aflatoxin came from the resistant parent (Mp313E). ZmLOXS is
part of the pathway that provides substrates for the synthesis of JA Christensen et al in
2013, and the ts]1 mutation results in the lack of sufficient JA to properly form male floral
structures instead of female. JA is also known to be involved in direct and indirect
mechanisms for plant resistance to fungal and insect attack (Browse, 2009; Koo and
Howe, 2009), and annotation of ZmLOXS includes fungal resitance as a biological
process in the Gramene maize genome database.

Another previously published QTL was highlighted in this linkage mapping
exercise after gene GRMZM2G015419 (ZmLOX 10) bin 4.09 mapped directly under a
QTL of LOD 2.6 that explains approximately 5% of the phenotypic variation observed in
the MpT population in one environment. The gene also mapped correctly in two other
populations (MpT and MpVa) but no QTL was identified at this location in these
mapping populations. ZmLOX 10 has also been reported to play an important role in the
biosynthesis of green leaf volatiles (GLVs), a group of compounds that possess both anti-
insect and anti-fungal properties (Prost et al, 2005; Matsui et al, 2006). These GLVs have
also been reported to induce the expression of other defensive genes (Bate and Rothstein,
1998). There is evidence that ZmLOX 8 and ZmLOX 10 work synergistically, although
the enzymes they express are located in different cellular compartments, and the genes
are found on different chromosomes in the maize genome. A reduced expression of JA by
ZmLOX 8 leads to diminished levels of (GLVs) by ZmLOX 10 Chrustensen et al (2013).
Such an epistatic interaction could not be detected in the QTL mapping populations used
in this study, as they only had ~ 200 F2:3 families each.
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Two markers, (one InDel and one SSR) linked to gene GRMZM2G156861
(ZmLOX 1 and 2 in bin 3.06) according to the IBM2 2008 Neighbors map in MaizeGDB,
mapped within the confidence interval but very close to the edge of another QTL on
chromosome 3 of the another MpT mapping population. ZmLOX 1 or 2 (or both) could
therefore possibly be responsible for the phenotypic variation associated with this QTL.
All other ZmLOXSs in the maize genome mapped outside of previously identified QTLs
(Table 3.2) however, six of the markers mapped in this study did help narrow previously
reported QTL intervals; although they were not presumed to be the causal gene for the
QTL, they did help to fine-map them and reduce the interval for future marker
introgression of the QTL. These included markers linked to GRMZM2G017616 (ZmLox
9), GRMZM2G106748 (ZmLOX 12), GRMZM2G102760 (ZmLOX 5),
GRMZM2G070092 (ZmLOX 7), GRMZM2G109130 (ZmLOX 3) and
GRMZM2G109056 ( ZmLOX 4) (Table 3.2).

For the association mapping, a total of 215 SNPs were identified within the
genetic sequence of all the ZmLOX genes using the in-house hapmap database
(Supplementary Table 1). Of all the 215 SNPs, 19 were identified as associated to
aflatoxin accumulation resistance according to the general linear model (GLM) of
TASSEL, with p-values that ranged between 7.51x10*<p < 8.43 x 10~ (Table 3.3).
Ideally, the same SNPs with a relatively low p-value would be polymorphic in one or
more of the QTL mapping populations in order to confirm the effect of the locus via QTL
mapping as well, but none of the associated SNPs could be converted into a polymorphic
KASP assay in this study. This may have been because of the high sequence duplication
within the ZmLOX gene family, or they may have simply been monomorphic in all four
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populations. Only one SNP was found from within or linked to the sequence of ZmLOX
4 and 11 (GRMZM2G109056 and GRMZM2G009479), which is too small a number to

be confident that negative results are truly representative of the effects of these genes.

Sequence Evolution

Of all 13 LOX genes found in maize, GRMZM2G109056 (ZmLOX 4) located in
bin 1.09 and GRMZM2G102760 (ZmLOX 5) located in bin 5.02 are the most identical,
with a sequence similarity of 94% according to a BLAST search carried out using the
NCBI alignment tool. Both genes consist of 9 exons and 8 introns, but the second intron
spans ~ 11kb in ZmLOX 4 and only ~ 500bps in ZmLOX 5. A blast search of this intron
was conducted on the NCBI (a general database for DNA sequences) and GRAMENE
databases (a maize database) and both databases matches the intron to multiple genes as a
huge intron and therefore can be assumed that this intron is a retroelement, and since
nearly 85% of the maize genome is composed of hundreds of transposable element
families that are randomly dispersed across the whole genome (Schnable et al 2012), this
strengthens the assumptions that the intron might be a retrotransposon such as Ji, huck
and opie which are the most common retrotransposons present within the maize genome
(Phillip et al; 2005) . ZmLOX 4 and 5 are only 40-67% identical to other ZmLOXs
(Fuente et al, 2012).

The linked pair of genes ZmLOX 1 and ZmLOX 2 share the same gene [.D.
(GRMZM2G156861) in all maize databases and taken separately, are the next most
similar paralogs in the Lox gene family. This is common with tandemly duplicated genes
in the maize genome, which may result in duplication following transposable element

insertion (with or without subsequent excision). Genes GRMZM2G070092 (ZmLOX 7)
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and GRMZM2G104843 (ZmLOX 8) are a set of segmentally duplicated genes with near
identical sequences (Fuente et al 2013) both having 7 exons and 6 introns. The first 2
exons of both genes share 83% and 93% identity and the intron between them is 83%
identical. Another set of segmentally duplicated genes are GRMZM2G015419 ZmLOX
10, with 3 exons and 2 introns and GRMZM2G009479 ZmLOX 11, with 5 exons and 4
introns, which share 94% sequence identity (Fuente et al 2013) and both belongs to the
13-LOX group as the ZmLOX 7 and 8. Genes GRMZM2G109130 (ZmLOX 3),
GRMZM2G109056 (ZmLOX 4), GRMZM2G017616 (ZmLOX 9), GRMZM5G822593
(ZmLOX 13) are all on chromosome 1, and ZmLOX 3 and 4 are only 4kb apart from
each other and share a sequence identity of 80% (and both are 9-LOX genes). ZmLOX 9
and 13 are much further away, and not similar to ZmLOX3 and 4, nor each other (and

both are 13-LOX genes).

Discussion

All ZmLOXs were found on six of the ten chromosomes present in the maize
genome, and all mapped to these locations as expected. Maize LOX genes are divided
into two major functional groups: 9-hydroperoxides (9-LOXs) and 13- hydroperoxides
(13-LOXs), depending on the carbon where their molecular dioxygenation takes place.
ZmLOX 1, 2, 3, 4 and 5 all belong to the 9-LOXs group and their functions are still not
well known, while ZmLOX 7, 8, 9, 10, 11, and 13 all belongs to the 13-LOXs group and
are known or putative producers of JA and GLVs (Nemchenko et al, 2006; Gao et al,
2008; Part et al, 2010). Compounds produced by the various lipoxygenase pathways
belonging to the 13-LOX group includes hydroperoxide lyase (HPL) and allene oxide

synthase (AOS) branches, whose final product, GLV and JA, play a very important role
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in plant immunity against predatory insects and fungi (Engelberth et al 2004; 2011). The
composite interval mapping results of this study (Figure 3.4) can be compared with
published information to suggest a biological role of some of these genes in aflatoxin
accumulation resistance.

Genes GRMZM2G104843 (ZmLOX 8) and GRMZM2G015419 (ZmLOX 10) are
reported to direct and indirect roles in plant defense against herbivory and fungal
resistance by producing the substrates used in the biosynthesis of JA and GLVs
respectively Christensen et al (2013); however, due to the physical separation of both
genes in the maize genome, it has been suggested that the only interaction between both
genes will be as a result of signaling crosstalk of their products; this has not yet been
demonstrated in laboratory assays (Christensen et al, 2013). ZmLOX 8 mapped directly
under a QTL of LOD value 5.6 (Table3.2). ZmLOX 10 generates 13S-HPOTE, which is
required for synthesis of GLVs, but this only happens in the presence of five of the other
13-LOXs (and especially gene GRMZM2G009479, ZmLOX 11) (Nemchenko et al
2006). ZmLOX10 was found beneath a QTL for aflatoxin accumulation resistance with a
LOD value of 2.6.

ZmLOX 5 (and its near identical homolog ZmlLox4) belongs to the 9-LOX
family; ZmLOX 5 is expressed in silks (Park et al; 2010) and mapped directly under
another QTL found in bin 5.02 with a LOD value of 2.4. The near identical homolog
ZmLOX4 was neither associated nor linked to a QTL for aflatoxin accumulation
resistance, and it has a very different expression pattern than ZmLOX 5, as it is expressed

primarily in the roots (Park et al, 2010). This may explain the lack of association with
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aflatoxin levels in maize grain, and we may speculate that ZmLOX4 may have more to
do with resistance to pests that attack corn roots.

Although most of the ZmLOXs identified in this study with an effect on aflatoxin
accumulation resistance explainied less than 5% of the phenotypic variation observed in
the populations measured, it will still be informative to verify the effect of the resistant
alleles through the creation of transgenic lines, near isogenic lines (NILs), or knock-out
mutants to verify the effect of these genes in a different background other than the
background present in the mapping populations of this study. Genes GRMZM2G104843
(ZmLOX 8) and GRMZM2G015419 (LmLOX 10) both explain approximately 5% of the
phenotypic variation, which may be a large enough effect to justify further studies. The
expression pattern of ZmLOXs varies from tissue to tissue and are expressed at different
times in the life of the plant (Table 3.4a). For example GRMZM2G102760 (ZmLOX 5) is
expressed more in silks and immature seeds while almost at the same time, gene
GRMZM2G070092 (ZmLOX 7) is expressed more in the tassel. Gene
GRMZM2G040095 is moderately expressed in every tissue at any given time in the life

of the plant Sehkon et al (2011) (Supplemental Figure 1)
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CHAPTER IV
CONSTRUCTING MAIZE NEAR ISOGENIC LINES (NILS) TO TEST
GENOMIC REGIONS FOR RESISTANCE TO AFLATOXIN

ACCUMULATION IN MAIZE

Abstract

Aspergillus flavus is an opportunistic saprophytic and/or pathogenic fungus of
maize that may infect the living plant when it is under stress. When it is able to overcome
infection barriers and sporulate, it initiates the production of a secondary metabolite
known as aflatoxin, a carcinogenic substance that negatively affects the health of
consumers of contaminated maize, and thus causes farmers in hot or humid areas of the
world great economic losses. There have been many efforts to combat either the invasion
of maize by this fungus or its production of aflatoxin. One of the many programs that
have been practiced to combat this issue is the generation of maize that is resistant to the
fungus or the accumulation of its toxins. The mapping of molecular markers has helped
in the identification of Quantitative Trait Loci (QTLs) that are correlated to aflatoxin
accumulation resistance. For validation and detailed study of QTLs, the creation of near
isogenic lines (NILs) is a valuable tool, because lines that are nearly isogenic to
susceptible maize for specific regions, carrying resistance alleles only in this one region
but otherwise identical to the susceptible line, can help validate the location and physical

effects of different regions on resistance.
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Introduction

Aspergillus flavus is a fungi that is mostly found in soil and plant tissue samples,
and it is an opportunistic pathogen of many crops. Under the right conditions for growth,
A. flavus will infect and produce a carcinogenic secondary substance known as aflatoxin
(Orum et al 1997). Carcinogenic aflatoxin B1 (AFB1), produced by the fungus, is one of
the major food safety concerns of maize. Aflatoxins were first discovered in the early
1960’s in England when a very large group of turkeys died after consuming a grain with a
high level of aflatoxin accumulation (Richard and Payne; 2003). This secondary
metabolite is of great concern to both human and animal health because of its damaging
effect on development and immune systems and extreme carcinogenic properties. Thus,
most countries have strict regulations to limit accumulation of aflatoxin in maize and all
other agricultural products that are susceptible to aflatoxin (Wang and Tang 2005).

Maize (Zea mays L.) is a staple food for much of the world population especially
in many developing countries, and in tropical environments it is often contaminated by
aflatoxin B1 (Castells et al 2007). The U.S Food and Drug Administration (FDA)
prohibits interstate commerce of maize grains with an aflatoxin concentration equal to or
greater than 20ng/g (Brown et al 1993). Multiple studies have been published on finding
Quantitative Trait Loci (QTLs) that are associated with aflatoxin resistance, and dozens
of the QTLs have been identified in maize lines that are resistant to aflatoxins
(Windstrom et al, 2003, Mideros et al; 2009). Researchers can use different population
structures such as backcross (BC), F2, double haploids, testcrossed progenies, half sib and
full sib families, F2 derived families, recombinant inbred lines (RIL) and diverse inbred
population structures for detecting and mapping QTLs and for subsequent confirmation
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of the detected QTLs in different genetic backgrounds. Another way to confirm and
validate QTLs is the use of near isogenic lines (NILs) which are lines that differ only in
one region, such as a QTL of interest. The creation of NILs is used for detailed study of
QTLs that have been previously detected in other populations and are thus known to
contribute to the trait of interest. Near isogenic lines can be used for the verification,
mapping and incorporation of desired QTL into an elite cultivar that has all other
desirable phenotypic characteristics except for the one that the QTL of interest controls
(Eshed and Zamir 1995; Kaeppler, 1997). The fine-mapping of the NILs using molecular
markers can in some instances be an effective approach in detecting new QTLs (Osborn
et al 1987). NILs are useful for the accurate estimation of the effects of a QTL on a
particular trait, and NILs carrying more than one QTL at a time are suitable for
determining epistatic interactions, genetic linkage and genomic architecture of a trait (Pea
et al 2013). The use of NILs to verify and fine map QTLs has been successful in maize
(Graham et al, 1997), rice (Yu et al, 1991), soybeans (Muehlbaure et al, 1988) and tomato
(Brouwer and St Clair 2004) among other species.

The QTL regions are identified in a mapping population with the use of molecular
markers and estimates of the level at which the QTL contribute to the trait of interest are
calculated (Kaeppler, 1997). NILs for aflatoxin accumulation resistance are derived by
the initial crossing of a resistant line with known QTL that contribute to aflatoxin
resistance to a susceptible line, and subsequently backcrossing the progeny derived from
the initial F1 to the susceptible parent for five to six generations (Szalma et al; 2007) to
create a line that differs from the susceptible parent in just the QTL of interest initially

present in the resistant parent. In this project, the construction of the NIL will be based on
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one SNP of interest per NIL so that the effect of the each SNP on the trait can be tested
separately. Conventional backcrossing is a process whereby a desired trait from a donor
parent is transferred into an elite recurrent parent that has all other desirable phenotypic
characteristics (Soto-Cerda; 2013). Identification of molecular markers linked to various
genes and QTLs allows the marker assisted selection of these genes or QTLs during the
introgression process via a series of backcrossing to the recurrent (susceptible) parent to
create the NILs, and prevents the QTL from being lost in the process. A final selfing step
fixes the QTL in the NIL in homozygous form.

Molecular markers are used to identify which alleles have been inherited by
progeny after each generation. In the final step, both the susceptible parent and the NIL
will be grown and phenotyped together to determine the effect of the genomic regions
identified by a QTL or SNP haplotype on aflatoxin accumulation resistance (Kaeppler;
1997). Despite the large amount of QTLs that has been identified in various experiments
and published in the literature, the transfer of these QTL into elite germplasm for
validation and for the improvement of elite cultivars is very rare (Robertson et al; 2005).
However, the use of NILs to validate QTL can help instill confidence in these QTL for
breeders who wish to use them in the improvement of quantitative traits via marker
assisted selection (Stuber et al, 1992). Results presented in this project are preliminary
and will not complete the backcrossing to the required level, because I can only go as far
as the BC2 generation in this project for my master’s thesis. I intend to continue the

project for my PhD in the immediate future.
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Materials and Methods
Genetic stock and plant material

A total of 11 unrelated maize inbred lines (7 aflatoxin resistant lines and four
aflatoxin susceptible lines, Table 4.1) were used to start the creation of near isogenic lines
(NILs). Individual pairs of resistant and susceptible lines were crossed to generate Fi
progenies. The Fi progeny obtained from each cross was backcrossed to the original
susceptible parent to create the BCi generation. Twenty-five Single Nucleotide
Polymorphisms (SNPs) from the in-house maize genome wide association studies
(GWAS) hapmap database with the highest influence on aflatoxin accumulation
(according to p value and R? from Warburton et al., 2015) was chosen as described in the
following section. These SNP makers were used to obtain allelic information from all the
inbred lines used for the creation of the NILs to know which lines to cross (as parents had
to be polymorphic for the SNPs of interest). The aim of the crossing was to produce two
to three NILs for each SNP region, each in a different susceptible genetic background.
After each generation of backcrossing to the recurrent parent (the susceptible parent in
this case), the progeny will consist of 50% more of the recurrent parent than the previous
generation (Figure 4.1). When the BC1 was again backcrossed to the susceptible parents
for the creation of a segregating BCz population, marker assisted selection was carried
out using the set of 25 SNPs (Table 4.3) to keep plants with the alleles from the resistant
parent. The plants that were heterozygous for the resistant line's allele at one or more of
the target loci were selected to be carried into the next generation of backcrossing. Plants
homozygous for the susceptible recurrent allele were discarded to eliminate plants

without the desired allele at the loci to be validated for resistance to aflatoxin and also to

75

www.manaraa.com



reduce labor, as fewer plants are carried on to the next generation. Backcrossing with
selection will continue until the BC3 generation, which will be selfed twice to create the
BC3S:2 generation (Figure 4.2); plants selected with the SNP markers will be fixed for the

regions to be tested and thus represent the end of the NIL derivation.

BC:, 2| m—
93.75 : 6.25 !
e 2121 | —
96.875 : 3.125

Figure 4.1  The genome of the donor parent is reduced by 50% after each generation of
backcrossing. Byrne and Richardson; 2005.

Identification of SNP markers and development of KASP assays

Warburton et al, (2013; 2015) described the Genotype by Sequencing (GBS) data
used in this study, which was generated according to Elshire et al (2011) for a panel of
273 diverse maize inbred lines containing aflatoxin accumulation resistant and
susceptible genotypes and stored in an in-house hapmap database. The database presents
the variation in the genomic sequence and allelic distribution of each line for all GBS
data. The SNPs of interest from the GWAS study of Warburton et al. (2015), those

associated with aflatoxin accumulation with the lowest p-values (2.87 x 10719 < p<9.78 x
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107°) were found in the hapmap database for every line in the panel (Table 4.3). Those
SNPs that were polymorphic between as many potential parents as possible and that
displayed a minor allele frequency (MAF) greater than 5% were used for the creation of
the NILs.

KASP assays were designed for the SNPs of interest by finding 100bp of DNA
sequence from both upstream and downstream of the SNP of interest in the B73 reference
genome Lawrence et al; (2008) and the assay was ordered from LGC genomics (Hurts
UK) and tested for amplification and polymorphism on the 11 inbred lines used for the
creation of the NILs. The KASP assays were used to select the individual progeny that

carried the SNP allele of interest (from the resistant parent) from one generation to the

next.
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SNP Genotyping and genomic distribution.

Leaf samples were collected from all 11 inbred lines that serve as the parents of
the NILs. DNA was extracted from these parents to verify that each KASP assay
genotyped the parents in the same way as did the original GBS data. Plants from the BC;
generation were genotyped as the first generation segregating population for marker
assisted selection. From all plants to be genotyped, leaf tissue samples were collected
from individual plants, frozen to -80°C, lyophilized and ground to a fine powder. DNA
was extracted as described by Saghai - Maroof (1984) using the CTAB
(cetyltrimethylammonium bromide) method. The DNA samples were genotyped with 25
SNPs via KASP as described below and allele calling was carried out using the klustal
caller software for the OMEGA plate reader by BMG LABTECH GMBH, Orthenberg,
Germany.

Before genotyping, the 25 SNPs were individually tested to ensure they mapped
to the correct location in the maize genome using one of four previously constructed
mapping populations. KASP assays work using a 94KDa recombinant thermostable
DNA polymerase (KlearTaq). The amplification of the DNA at targeted loci using the
KASP assay involves the use of two specially constructed mixtures, the SNP specific
KASP assay mix and the KASP master mix. KASP assays enable bi-allelic scoring of
SNPs at specified loci through competitive allele-specific PCR. The KASP assay mix
contains 3 primers, two allele specific forward primers which each harbors a unique tail
sequence connected to a universal FRET (fluorescence resonant energy transfer)
sequence, and one common reverse primer. The KASP Master mix also contain two

universal FRET cassettes labeled with FAM or HEX dye (one for each allele), which
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fluoresce at different wavelengths thereby making the difference in the genotype call for

different alleles when read by a fluorescent-based plate reader. The PCR conditions for

the KASP assays designed in this study are presented in table 4.2 below.

Table 4.2  Thermal cycling conditions using KlearTaq

Step Temperature Time Number of cycles
1 95°C 15 mins 1 cycle
95°C 30 sec
2 61°C 30 sec 34 cycles
72°C 1 min/kb
3 72°C 5 mins 1 cycle

The amplification pattern of two specific alleles (including the two homozygous

classes and the heterozygous class) in the KASP assay for 96 individuals in a 96-well

microtiter plate is shown in the klustal plot software in Figure 4.3 of the end-point

fluorescent read after the amplification process. One of the two fluorescent signals is

generated if the genotype of a given SNP is homozygous while both signal are generated

if the genotype is heterozygous for the given SNP.
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Proposed Theory

Testing phenotypic effect of the alleles of each SNPs (effect on the trait under
study) and the inheritance of each SNP will be done by observing the differences in
aflatoxin accumulation resistance averaged over individuals that inherited the desired
SNPs from the parents and those that did not due to Mendelian inheritance. The
implementation of this proposed theory will start at the BC3S: stage of this project when
the NILs would have been created and the testing of the phenotypic effect of each SNP
will be underway. The resistant allele of each SNPs will have been completely
backcrossed and fixed in the heterozygous state in a susceptible background after the
series of marker assisted backcrossing to the BC3 stage followed by selfing to get the
BCs3S1 and BC3S2 generation. The phenotypic effect of each SNP for the fixed NIL
carrying it will be calculated as explained by Kaeppler (1997), using the formula for the
calculation of the linear model as follows:

Yik =R Ty ek

where yik represents the phenotypic value of the kth replication of the jth line, pu
represents the mean of the two lines, yj represents the effect of the jth line and ejk is the
residual error where k =1,2,...n = number of replications; (Kaeppler, 1997). To test the
null hypothesis of equality of the means of the created NIL pairs, analysis of variance
(ANOVA) will be employed and the difference between the averages of all pairs of lines
that are tested in the study will be used to determine if a QTL is present in the individuals

tested or not.
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Figure 4.2 A scheme showing how plant materials was created.

Results and discussion to date

The creation of NILs requires at least five to six generations of maize backcrosses
and subsequent selfing, but it is very important to determine which of the segregating
individuals in each family carry the desired SNP or QTL allele from all the progeny

derived each year of backcrossing. To date, 15 KASP assays have been designed and
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tested, but only 6 of the 25 desired SNPs have been successfully converted to working
assays and are polymorphic in the parents used for the creation of the NILs. Testing one
of the SNP assays on all the individual progeny in the BC1 generation of all crosses
shows that approximately 40% (8 out of 20 individuals per family on average) inherited
the allele of interest from their parents. This is a bit lower than the 50% expected, but
within the range of probability. More assays are being designed and will be ready for the

next step in the project, being carried out now.

7T.423E-=

!
N

Figure 4.3 A typical genotyping clustal plot showing the genotypes of 95 individuals
(including the parents) and one negative template controls (NTC).

NOTE: Genotypes homozygous for the resistant allele reported by the FAM dye in blue,
genotypes homozygous for the susceptible allele reported by the HEX dye in red, and
heterozygous genotypes contains both resistant and susceptible alleles in green.
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The 6 SNPs that have been successfully converted to working assays were tested
on the QTL mapping population which they expected to be polymorphic according to the
hapmap data. Since the resistant parents used in the creation of the QTL mapping
population (Mp313E and Mp715) are present as parents of the NILs contained but in a
different susceptible background, it will give an idea of the heritability of the SNPs. The
results shows that out 184 individuals in the mapping population, 50 of the individuals
were homozygous for the resistant’s parent alleles, 35 individuals are homozygous for
the susceptible parents allele while the remaining 99 individuals were heterozygous for

both alleles from both parents (Figure 4.3). Only one plate with 92 individuals is shown.

Considerations for the use of NILs

At the BCs generation it is expected that the genome of all the individual NILs
will carry ~97% of the recurrent parents and ~3% of the donor parent, including the
desired alleles for the favorable SNPs (Figure 4.1). Each NIL is designed to examine a
specific SNP or chromosomal region and the effect it has on aflatoxin accumulation
resistance. NILs are also very important as they can be used in physically observing the
effect of the introgressed SNP or region, although not all traits can be physically
differentiated visually when grown side by side with the susceptible (recurrent) parent. If
aflatoxin levels are not different between the NIL pairs, tests to determine the fungal
biomass via qPCR may show a difference in this case NILs are also a very useful tool in
studying the interactions of two or more SNPs/chromosome regions in the same
background and this will provide insight on the epistatic interactions between the
SNP/loci of interest (Kaeppler; 1997). Initial results by Williams et al (unpublished)

provide an indication of these interactions, where the phenotypic effect of 2 or 3 QTLs
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providing resistance from Mp313E, a resistant maize inbred line, was measured in a
susceptible background (Va35) and the effect of two QTL together was, in some cases, to
make the plant more resistant to aflatoxin accumulation than expected based on the
phenotypic effect of single QTL (Table 4.4). Furthermore, the created NILs can be very
useful for studying high resolution mapping if smaller chromosomal regions are
introgressed than were mapped in the original QTL mapping populations (since multiple
generations of meiosis can provide more recombination and thus a smaller chromosomal

region being tested).

Table 4.4  Validation of QTLs in NILs

QTLs Phen. Effect  |ppb aflatoxin 2012| ppb aflatoxin 2014
2.05 15% 289 231
3.05 5% 538 401
4.06 10% 303 278
4.09 14% 157 368
3.05,4.06 5%+10% - 242
2.05,4.09 15%+14% - 258
2.05,3.05 15%+5% - 36
3.05,4.09 5%+14% - 28
4.06, 4.09 10%+14% - 10
2.05,3.05,4.09(15% + 5% + 14% - 82
2.05,3.05,4.06(15% + 5% + 10% - 12
None - 690 -
Va35s - 748 411
Mp313E - 26 1

Table adapted from Williams et al; (unpublished).
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CHAPTER V

CONCLUSION

Aflatoxin produced by 4. flavus poses a serious threat to public health and causes
high economic losses for farmers of cotton, maize, and some other crops. This study is
one of the ongoing effort to make maize more resistant to 4. flavus and aflatoxin
accumulation. Various government and non-government organization and also the
USDA-ARS Corn Host Plant Resistance Research Unit (CHPRRU) are also working on
how to make maize more resistant to 4. flavus and aflatoxin accumulation. The overall
objectives of this study are

1. To identify all the ZmLOXs and report their sequence diversity and
expression patterns.

2. To map their effects on aflatoxin accumulation resistance via linkage
(QTL mapping) and association mapping.

3. To create Near Isogenic Lines via Marker Assisted Selection, with the
ultimate goal of validating SNPs identified in a previous GWAS study for
association accumulation resistance.

Lipoxygenase enzymes are known to catalyze the addition of molecular oxygen to
poly-unsaturated fatty acid which are subsequently used in a series of pathway producing
the jasmonic acid and methyl jasmonate, two compounds that are known to contribute to

plant resistance to pest and pathogens. Lipoxygenase gene family in maize were
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identified and their influence on 4. flavus and aflatoxin accumulation was determined in
this study using the aflatoxin association mapping and the QTL mapping methods. Both
methods show that three of the ZmLOXs have measurable effect on aflatoxin
accumulation.

Creation of Near isogenic lines (NILs) is very important for detailed studying the
effect of a gene or a QTL on aflatoxin accumulation resistance. It also helps to separate
the effect of the QTL from other genetic effect. NILs are different in just the loci of
interest and thus helping to differentiate the effect of that loci from other loci. This

project is still an ongoing project that I will continue to work on for my PhD in the

nearest future.
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